∴f(m)=
m2 |
m+2 |
n2 |
n+1 |
m2 |
m+2 |
(1?m)2 |
2?m |
4 |
m+2 |
1 |
2?m |
則f′(m)=
(6?m)(3m?2) |
(m2?4)2 |
令f′(m)=0,0≤m≤1,解得m=
2 |
3 |
當(dāng)0≤m<
2 |
3 |
2 |
3 |
∴當(dāng)m=
2 |
3 |
2 |
3 |
4 | ||
|
1 | ||
2?
|
1 |
4 |
故選:A.
m2 |
m+2 |
n2 |
n+1 |
1 |
4 |
4 |
15 |
1 |
8 |
1 |
3 |
m2 |
m+2 |
n2 |
n+1 |
m2 |
m+2 |
(1?m)2 |
2?m |
4 |
m+2 |
1 |
2?m |
(6?m)(3m?2) |
(m2?4)2 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
4 | ||
|
1 | ||
2?
|
1 |
4 |