我在書上看到這么一句:只要定義域關(guān)于原點對稱,那么函數(shù)y=X^2 在區(qū)間(負(fù)無限大,正無限大)上是偶函數(shù),但在區(qū)間 [-1,2]上卻既不是奇函數(shù)也不是偶函數(shù) .我對這句話可以這么理解嗎?這里說[-1,2]上卻既不是奇函數(shù)也不是偶函數(shù),那么在
我在書上看到這么一句:只要定義域關(guān)于原點對稱,那么函數(shù)y=X^2 在區(qū)間(負(fù)無限大,正無限大)上是偶函數(shù),但在區(qū)間 [-1,2]上卻既不是奇函數(shù)也不是偶函數(shù) .我對這句話可以這么理解嗎?這里說[-1,2]上卻既不是奇函數(shù)也不是偶函數(shù),那么在區(qū)間,[3,2]上也可以理解成既不是奇函數(shù)也不是偶函數(shù),我的問題主要是對區(qū)間[-1,2] 大小的限制是什么,區(qū)間可以任取嗎?只要定義域不關(guān)于原點對稱
數(shù)學(xué)人氣:800 ℃時間:2020-04-12 17:21:52
優(yōu)質(zhì)解答
對的,因為要成為奇函數(shù)偶函數(shù),他們的定義域一定要關(guān)于原點對稱的.奇函數(shù)就是f(-x)=-F(x),偶函數(shù)就是f(x)=f(-x),在定義域不關(guān)于原點對稱的情況下,并不能實現(xiàn)前面兩個等式.就拿你說的那個例子為例,在定義域[-1,2]中,函...
我來回答
類似推薦
- 已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x(x+1),求出函數(shù)f(x)的解析式.
- 高一數(shù)學(xué)(關(guān)于正切函數(shù)的奇偶性)應(yīng)該很簡單,不過我上學(xué)期學(xué)奇偶性時沒太聽課.
- 新高一數(shù)學(xué),是關(guān)于函數(shù)的奇偶性和證明增減函數(shù)的一些問題.幫幫忙~~
- 函數(shù)的奇偶性
- 社會發(fā)展的根本動力是( ).A.階級斗爭 B.生產(chǎn)力和生產(chǎn)關(guān)系的矛盾 C.社會改革 D.社會革命
- 五年級語文下冊《奇怪的圣誕包裹》的分析,明天要交,
- 用“梗咽、蹣跚、炫耀、憧憬”寫一段話
- He works on a farm.(改為一般疑問) Does he
- A:Wat is that over there?B:( A:( ) the table.B:oh,it is a basketball.每空一詞
- We have there m_____a day,breakfast,lunch and supper的空格中填什么?
- 若2m-4與3m-1是同一個數(shù)的平方根,則m為_.
- 不知道那個字的讀音,怎么打字啊,又不知五筆法
猜你喜歡
- 1when it's spring in beijing,it's(?)in Sydney A.fall B.winter Cspring
- 2小華和小明同時計算一道整式乘法題(2x+a)(3x+b).小華把第一個多項式中的“抄成了-a,得到結(jié)果為6x2+11x-10;小明把第二個多項式中的3x抄成了x,得到結(jié)果為2x2-9x+10. (1)你知道式子中
- 3請你設(shè)計一條以環(huán)保、可持續(xù)發(fā)展為主體的公益廣告
- 40.6+7/15x=2
- 5已知A={x|x^2+2x+P=0},且A∩{x|x>0}=空集,求實數(shù)P的取值范圍.
- 6實數(shù)a,b在數(shù)軸上的對應(yīng)點如圖所示,則下列不等式中錯誤的是( ) A.ab>0 B.a+b<0 C.ab<1 D.a-b<0
- 7若a>1,b>1,log2b×log2a=16,則log2(ab)的最小值為____
- 8能從生物學(xué)的角度簡單說說大腦的反應(yīng)速度與神經(jīng)回路的關(guān)系嗎?
- 9標(biāo)朗讀節(jié)奏和重音
- 10生物體的大小是與細(xì)胞的大,還是細(xì)胞的數(shù)量有關(guān)?
- 11《歸園田居》中具體描寫勞動情景的詩句是 :,.
- 12取一定質(zhì)量的CO和CO2的混合氣體,通入足量的Ba(OH)2溶液中,充分反應(yīng)后過濾,發(fā)現(xiàn)生成的沉淀和所取的混合氣體質(zhì)量相等.求混合氣體中,碳原子與氧原子的個數(shù)比.