∴AO⊥BD,
∵BO=DO,BC=CD,∴CO⊥BD.
∵AO⊥BD,CO⊥BD,AO∩OC=O,
∴直線BD⊥平面AOC,
∵AC?平面AOC,
∴BD⊥AC;
(2)在△AOC中,由已知可得AO=1,CO=
3 |
∴AO2+CO2=AC2,
∴∠AOC=90°,
即AO⊥OC.
又AO⊥BD,BD∩OC=O,BD,OC?平面BCD
∴AO⊥平面BCD.
在△ACD中,CA=CD=2,AD=
2 |
∴AO=1,S△CDE=
1 |
2 |
| ||
4 |
| ||
2 |
∴VE-ACD=VA-CDE=
1 |
3 |
| ||
6 |
2 |
3 |
2 |
1 |
2 |
| ||
4 |
| ||
2 |
1 |
3 |
| ||
6 |