ex |
ex+1 |
∵函數(shù)y=f(x)的導(dǎo)函數(shù)是奇函數(shù).
∴f′(-x)=-f′(x),解得a=
1 |
2 |
ex+1?1 |
ex+1 |
1 |
2 |
1 |
2 |
1 |
ex+1 |
1 |
2 |
1 |
2 |
(2)由(1)f′(x)=
ex |
ex+1 |
1 |
ex+1 |
當(dāng)a≥1時,f′(x)<0恒成立,
∴當(dāng)a≥1時,函數(shù)y=f(x)在R上單調(diào)遞減;
當(dāng)0<a<1時,由f′(x)>0得(1-a)(ex+1)>1,即ex>?1+
1 |
1?a |
a |
1?a |
∴當(dāng)0<a<1時,y=f(x)在(ln
a |
1?a |
在(?∞,ln
a |
1?a |
故當(dāng)a≥1時,函數(shù)y=f(x)在R上單調(diào)遞減;
當(dāng)0<a<1時,y=f(x)在(ln
a |
1?a |
a |
1?a |