精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 方程|x?4?y2|+|y+4?x2|=0所表示的曲線與直線y=x+b有交點,則實數(shù)b的取值范圍是_.

    方程|x?
    4?y2
    |+|y+
    4?x2
    |=0
    所表示的曲線與直線y=x+b有交點,則實數(shù)b的取值范圍是______.
    數(shù)學(xué)人氣:500 ℃時間:2019-10-17 04:02:21
    優(yōu)質(zhì)解答
    ∵由 方程|x?
    4?y2
    |+|y+
    4?x2
    |=0
    ,
    可得 |x?
    4?y2
    | =0
     且 |y+
    4?x2
    |=0

    ∴x2+y2=4且x≥0,y≤0,表示以原點為圓心,以2為半徑的圓位于第四象限內(nèi)的部分,
    包括與軸的交點,如圖所示:
    當直線與AB重合時,曲線與直線有兩個交點,
    當直線與l重合時,曲線與直線相切,僅有一個交點,
    AB在y軸上的截距為-2,易知直線l在y軸上的截距為-2
    2
    ,且AB∥直線l,故實數(shù)b的取值范圍是[?2
    2
    ,?2]
    ,
    故答案為  [?2
    2
    ,?2]
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版