精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 證明:(sinθ)^4+(sin2θ)^4/4+(sin4θ)^4/16+(sin8θ)^4/64=(sinθ)^2-(sin16θ)^/256

    證明:(sinθ)^4+(sin2θ)^4/4+(sin4θ)^4/16+(sin8θ)^4/64=(sinθ)^2-(sin16θ)^/256
    數學人氣:192 ℃時間:2020-06-18 19:24:53
    優(yōu)質解答
    (sinθ)^4=(sinθ)^2(1-(cosθ)^2)=(sinθ)^2-(sinθcosθ)^2=(sinθ)^2-(sin2θ)^2/4
    所以(sinθ)^4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4+(sin2θ)^4/4=(sinθ)^2-(sin2θ)^2/4(1-(sin2θ)^2)=(sinθ)^2-(sin2θ)^2(cos2θ)^2)/4=(sinθ)^2-(sin4θ)^2/16
    同理 一直加到(sin8θ)^4/64 同樣的變換 結果等于(sinθ)^2-(sin16θ)^/256
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版