an+2-an+1=r(Sn+1-Sn)=ran+1
即an+2=(r+1)an+1
又 a2=ra1=ra
∴當(dāng)r=0時(shí),數(shù)列{an}為:a,0,0,…;
當(dāng)r≠0時(shí),由r≠-1,a≠0,∴an≠0
由an+2=(r+1)an+1得數(shù)列{an}從第二項(xiàng)開(kāi)始為等比數(shù)列
∴當(dāng)n≥2時(shí),an=r(r+1)n-2a
綜上數(shù)列{an}的通項(xiàng)公式為an=
|
(II) 對(duì)于任意的m∈N*,且m≥2,am+1,am,am+2成等差數(shù)列,理由如下:
當(dāng)r=0時(shí),由(I)知,an=
|
∴對(duì)于任意的m∈N*,且m≥2,am+1,am,am+2成等差數(shù)列;
當(dāng)r≠0,r≠-1時(shí)
∵Sk+2=Sk+ak+1+ak+2,Sk+1=Sk+ak+1
若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,則2Sk=Sk+1+Sk+2
∴2Sk=2Sk+ak+2+2ak+1,即ak+2=-2ak+1
由(I)知,a2,a3,…,an,…的公比r+1=-2,于是
對(duì)于任意的m∈N*,且m≥2,am+1=-2am,從而am+2=4am,
∴am+1+am+2=2am,即am+1,am,am+2成等差數(shù)列
綜上,對(duì)于任意的m∈N*,且m≥2,am+1,am,am+2成等差數(shù)列.