精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求證:數(shù)列{a

    已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求證:數(shù)列{a
    已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1
    (Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
    (Ⅱ)求數(shù)列{an}的通項.
    數(shù)學(xué)人氣:622 ℃時間:2019-09-17 12:43:33
    優(yōu)質(zhì)解答
    s(n) = (n+1)[a(n)+1]/2 - 1.
    s(n+1) = (n+2)[a(n+1)+1]/2 - 1,
    a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n)]/2,
    na(n+1) = (n+1)a(n),
    a(n+1)/(n+1) = a(n)/n,
    {a(n)/n}為首項為a(1)/1 = 3,的常數(shù)數(shù)列.
    a(n)/n = 3,
    a(n) = 3n = 3 + 3(n-1),
    {a(n)}是首項為3,公差為3的等差數(shù)列.錯了吧,,S(n+1)-Sn錯了樓主英明。。。a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n) + 1]/2,na(n+1) = (n+1)a(n) + 1,a(n+1)/(n+1) = a(n)/n + 1/[n(n+1)] = a(n)/n + 1/n - 1/(n+1),a(n+1)/(n+1) + 1/(n+1) = a(n)/n + 1/n.{a(n)/n + 1/n}為首項為a(1)/1 + 1 = 4,的常數(shù)數(shù)列。a(n)/n + 1/n = 4,a(n) = 4n -1 = 4(n-1) + 3 ,{a(n)}是首項為3,公差為4的等差數(shù)列?,F(xiàn)在是了那,敬請樓主采納~~多謝!其實在那之前我已寫好。。不過給個好評!
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版