s(n) = (n+1)[a(n)+1]/2 - 1.
s(n+1) = (n+2)[a(n+1)+1]/2 - 1,
a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n)]/2,
na(n+1) = (n+1)a(n),
a(n+1)/(n+1) = a(n)/n,
{a(n)/n}為首項為a(1)/1 = 3,的常數(shù)數(shù)列.
a(n)/n = 3,
a(n) = 3n = 3 + 3(n-1),
{a(n)}是首項為3,公差為3的等差數(shù)列.錯了吧,,S(n+1)-Sn錯了樓主英明。。。a(n+1) = s(n+1)-s(n) = [(n+2)a(n+1)-(n+1)a(n) + 1]/2,na(n+1) = (n+1)a(n) + 1,a(n+1)/(n+1) = a(n)/n + 1/[n(n+1)] = a(n)/n + 1/n - 1/(n+1),a(n+1)/(n+1) + 1/(n+1) = a(n)/n + 1/n.{a(n)/n + 1/n}為首項為a(1)/1 + 1 = 4,的常數(shù)數(shù)列。a(n)/n + 1/n = 4,a(n) = 4n -1 = 4(n-1) + 3 ,{a(n)}是首項為3,公差為4的等差數(shù)列?,F(xiàn)在是了那,敬請樓主采納~~多謝!其實在那之前我已寫好。。不過給個好評!
已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求證:數(shù)列{a
已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求證:數(shù)列{a
已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項.
已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)-1
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項.
數(shù)學(xué)人氣:622 ℃時間:2019-09-17 12:43:33
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知數(shù)列{an}中,a1=3,前n項和Sn=1/2(n+1)(an+1)?1 (Ⅰ)求證:數(shù)列{an}是等差數(shù)列; (Ⅱ)求數(shù)列{an}的通項公式.
- 已知數(shù)列{an}的前n項和為Sn,Sn=1/3(an-1),(1)求a1,a2(2)求證數(shù)列{an}的通項an
- 已知數(shù)列{an}的前n項和為Sn,且滿足an+2Sn*Sn-1=0,a1=1/2.求證:{1/Sn}是等差數(shù)列
- 數(shù)列{an}的前n項和記為Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求證:(1)數(shù)列{Sn/n}是等比數(shù)列
- 已知數(shù)列an的前n項和為Sn,且滿足Sn=Sn-1/2Sn-1+1,a1=1/2(1)求證:1/Sn是等差數(shù)列(2
- 衛(wèi)星運動軌道問題
- 已知5x+12y=60,求根號(x-4)^2+y^2的最小值
- 求幫助一道初一的數(shù)學(xué)題. 感謝
- 請仿照春最后3段以理想為話題寫一段話
- isn't the dolphin clever?怎么回答?
- 如圖,已知,△ABC和△ADE均為等邊三角形,BD、CE交于點F. (1)求證:BD=CE; (2)求銳角∠BFC的度數(shù).
- 若log底數(shù)2[log底數(shù)3(log底數(shù)4)]
猜你喜歡