精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求證:若圓內接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.

    求證:若圓內接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.
    數學人氣:997 ℃時間:2020-06-20 12:17:20
    優(yōu)質解答
    以兩條對角線的交點為原點O、對角線所在直線為坐標軸建立直角坐標系,(如圖所示) 
    設A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點E(
    c
    2
    ,
    d
    2
    ),AB的中點H(-
    a
    2
    ,-
    b
    2
    ).
    又圓心G到四個頂點的距離相等,故圓心G的橫坐標等于AC中點的橫坐標,等于
    c?a
    2
    ,
    圓心G的縱坐標等于BD中點的縱坐標,等于
    d?b
    2

    即圓心G(
    c?a
    2
    ,
    d?b
    2
    ),∴|OE|2=
    c2+d2
    4

    |GH|2=(
    c?a
    2
    +
    a
    2
    )
    2
    +(
    d?b
    2
    +
    b
    2
    )
    2
    =
    c2+d2
    4
    ,∴|OE|=|GH|,故要證的結論成立.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版