∴g(x)=2x;
(2)由(1)知:f(x)=
?2x+n |
2x+1+m |
因為f(x)是奇函數(shù),所以f(0)=0,即
n?1 |
2+m |
∴f(x)=
?2x+1 |
2x+1+m |
1?2 |
4 +m |
1?
| ||
1 +m |
(3)由(2)知f(x)=
?2x+1 |
2x+1+2 |
1 |
2 |
1 |
2x+1 |
易知f(x)在(-∞,+∞)上為減函數(shù).
又因f(x)是奇函數(shù),從而不等式:
f(t2-2t)+f(2t2-k)<0等價于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因f(x)為減函數(shù),由上式推得:t2-2t>k-2t2,
即對一切t∈R有:3t2-2t-k>0,
從而判別式△=4+12k<0,解得:k<?
1 |
3 |