則a2=4,∴a=2,
∴g(x)=2x,f(x)=
m?2x |
1+2x |
又∵f(x)為奇函數(shù),
∴f(-x)=-f(x),∴
m?2?x |
1+2?x |
m?2x |
1+2x |
整理得m(2x+1)=2x+1,∴m=1,
∴f(x)=
1?2x |
1+2x |
(Ⅱ)∵f′(x)=
?2.2xln2 |
(1+2x)2 |
也可用f(x)=
2 |
1+2x |
要使對(duì)任意的t∈[0,5],f(t2+2t+k)+f(-2t2+2t-5)>0解集非空,
即對(duì)任意的t∈[0,5],f(t2+2t+k)>-f(-2t2+2t-5)解集非空.
∵f(x)為奇函數(shù),∴f(t2+2t+k)>f(2t2-2t+5)解集非空,
又∵y=f(x)在R上單調(diào)遞減,∴t2+2t+k<2t2-2t+5,
當(dāng)t∈[0,5]時(shí)有實(shí)數(shù)解,
∴k<t2-4t+5=(t-2)2+1當(dāng)t∈[0,5]時(shí)有實(shí)數(shù)解,
而當(dāng)t∈[0,5]時(shí),1≤(t-2)2+1≤10,
∴k<10.