∵AC與BD是正方形ABCD的對角線,∴AC⊥BD,
![](http://hiphotos.baidu.com/zhidao/pic/item/faedab64034f78f0085c5b427a310a55b3191c28.jpg)
∵DD1⊥平面ABCD,∴AC⊥DD1,
∴AC⊥平面BD1,
∵AC?平面ACE,∴平面ACE⊥平面BDD1.
(2)證明:設(shè)AC∩BD=O,則O是AC中點,
連結(jié)OE,∵E點為DD1中點,∴OE∥BD1,
∵BD1不包含于平面ACE,OE?平面ACE,
∴BD1∥平面ACE.
(3) 設(shè)正方體ABCD-A1B1C1D1的棱長為2,
則AE=CE=
4+1 |
5 |
2 |
3 |
∴DO⊥AC,EO⊥AC,
∴∠DOE是二面角E-AC-D的平面角,
∴tan∠DOE=
DE |
DO |
1 | ||
|
| ||
2 |
∴二面角E-AC-D的正切值為
| ||
2 |