精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 拋物線y=2x^2上兩點A、B.O為原點,且OA垂直O(jiān)B,求三角形OAB面積的最小值.

    拋物線y=2x^2上兩點A、B.O為原點,且OA垂直O(jiān)B,求三角形OAB面積的最小值.
    數(shù)學人氣:602 ℃時間:2019-08-20 21:59:56
    優(yōu)質解答
    設A(x1,2x1^2),B(x2,2x2^2),則x1x2+(2x1^2)(2x2^2)=0,因為A、B不能為原點,所以x1、x2不為0,兩邊除以2x1x2得1+4x1x2=0,x1x2=-1/4.又△OAB面積=OA*OB/2=√(x1^2+2x1^4)*√(x2^2+2x2^4)/2=√[(x1^2+2x1^4)(x2^2+2x2^4)]...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版