1 |
1+x |
1 |
(1+x)2 |
x |
(1+x)2 |
當(dāng)-1<x<0時,f′(x)<0,f(x)在(-1,0)上單調(diào)遞減,
當(dāng)x=0時,f′(x)=0,
當(dāng)x>1時,f′(x)>0,f(x)在(1,+∞)上單調(diào)遞增,
所以x=1是f(x)的極小值點(diǎn)也是最小值點(diǎn),
所以f(x)的極小值=f(0)=0;
(2)由(1),f(x)≥f(0)=0,從而ln(1+x)≥
x |
1+x |
要證lna-lnb≥1-
b |
a |
a |
b |
b |
a |
令1+x=
a |
b |
x |
1+x |
1 |
x+1 |
b |
a |
a |
b |
b |
a |