∴OA=OC=AB=BC=3,
∴B(3,3),
又∵點B(3,3)在函數(shù)y=
k |
x |
∴將B的坐標(biāo)代入反比例函數(shù)解析式得:
k |
3 |
![](http://hiphotos.baidu.com/zhidao/pic/item/a8ec8a13632762d063ed040ea3ec08fa503dc6b4.jpg)
(2)分兩種情況:
①當(dāng)點P在點B的左側(cè)時,矩形OEPF和正方形OABC不重合部分為矩形PFCM,
∵P(m,n)在函數(shù)y=
k |
x |
∴mn=9,
∵PE=n,ME=BA=3,
∴PM=PE-ME=n-3,又CM=OE=m,
∴S=CM?PM=m(n-3)=mn-3m=9-3m=
9 |
2 |
解得:m=1.5,可得n=6,
∴點P的坐標(biāo)為(1.5,6);
②當(dāng)點P在點B的右側(cè)時,矩形OEPF和正方形OABC不重合部分為矩形ANPE,
∵P(m,n)在函數(shù)y=
k |
x |
∴mn=9,
∵OE=PF=m,NF=AO=3,
∴AE=OE-OA=m-3,又PE=n,
∴S=AE?PE=n(m-3)=mn-3n=9-3n=
9 |
2 |
解得n=1.5,可得m=6,
∴點P的坐標(biāo)為(6,1.5).
綜上,P的坐標(biāo)為(1.5,6)或(6,1.5).