精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 是否存在常數(shù)a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,對于任意正整數(shù)n成立,并求出a和b的值

    是否存在常數(shù)a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,對于任意正整數(shù)n成立,并求出a和b的值
    數(shù)學(xué)人氣:965 ℃時間:2020-02-04 02:30:33
    優(yōu)質(zhì)解答
    利用1^2+2^2+...+n^2=n(n+1)(2n+1)/62^2+4^2+..+(2n)^2=4(1^2+2^2+...+n^2)=2n(n+1)(2n+1)/33^2+5^2+...+(2n+1)^2=1^2+2^2+...+(2n+1)^2-1^2-[2^2+4^2+...+(2n)^2]=(2n+1)(2n+2)(4n+3)/6-1-2n(n+1)(2n+1)/3=n(4n^2+1...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版