?ab(a2+b2)-2ab(a-b)=7ab-8,
?ab(a2-2ab+b2)-2ab(a-b)+2a2b2-7ab+8=0,
?ab(a-b)2-2ab(a-b)+2a2b2-7ab+8=0,
?ab[(a-b)2-2(a-b)+1]+2(a2b2-4ab+4)=0,
?ab(a-b-1)2+2(ab-2)2=0,
∵a、b均為正數(shù),
∴ab>0,
∴a-b-1=0,ab-2=0,
即a-b=1,ab=2,
解方程
|
解得a=2、b=1,a=-1、b=-2(不合題意,舍去),
∴a2-b2=4-1=3.
故選B.