設(shè)曲線y2=4x的焦點(diǎn)為F,則F(1,0),設(shè)曲線y2=4x上的動(dòng)點(diǎn)P(x0,y0),
P點(diǎn)在曲線y2=4x上的準(zhǔn)線l:x=-1上的射影為M,由拋物線的定義可知,|PM|=|PF|,
又A(-1,2),
∴|AF|=
(1?(?1))2+(2?0)2 |
2 |
∴|PA|+|PM|=|PA|+|PF|≥|AF|=2
2 |
∴點(diǎn)P到點(diǎn)A(-1,2)的距離與點(diǎn)P到x=-1的距離之和的最小值為2
2 |
故答案為:2
2 |