∴
|
解得
|
(2)由(1)得,拋物線y=ax2-bx+c-1的解析式是y=ax2+(a+1)x-2a=x,
即ax2+ax-2a=0,
∵a是拋物線解析式的二次項(xiàng)系數(shù),
∴a≠0,
∴方程的解是x1=1,x2=-2,
∴拋物線y=ax2-bx+c-1滿足條件的點(diǎn)的坐標(biāo)是P1(1,1),P2(-2,-2).
(3)由(1)得拋物線y=ax2+bx+c的解析式是y=ax2-(a+1)x+1-2a,
①當(dāng)P1(1,1)在拋物線C1上時(shí),有a-(a+1)+1-2a=1,
解得a=-
1 |
2 |
1 |
2 |
1 |
2 |
∵點(diǎn)A(-1,2),C(0,2)兩點(diǎn)的縱坐標(biāo)相等,
∴直線AC平行于x軸.
②當(dāng)P2(-2,-2)在拋物線C1上時(shí),由4a+2(a+1)+1-2a=-2,
解得a=-
5 |
4 |
5 |
4 |
1 |
4 |
7 |
2 |
7 |
2 |
∴直線AC與x軸相交,
綜上所述,當(dāng)P1(1,1)在拋物線C1上時(shí),直線AC平行x軸;當(dāng)P2(-2,-2)在拋物線y=ax2+bx+c上時(shí),直線AC與x軸相交.