精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 幫忙解決幾道三角函數(shù)題(要過程)

    幫忙解決幾道三角函數(shù)題(要過程)
    1.△ABC中,sinBsinC=cos²A/2,判斷△ABC的形狀.
    2.若cos²(a--b)—cos²(a+b)=1/2,(1+cos2α)(1+cos2b)=1/3,求tanαtanb.
    3.化簡cos²a+cos²(a-π/3)+cos²(a+π/3).
    4.已知,0≤a<b<r<2π,cosa+cosb+cosr=0,sina+sinb+sinr=0,求b-a.
    5.已知a,b為銳角,且3sin²a+2sin²b=1,3sin²a=2sin²b,求a+2b.
    6.已知,a,b,r為銳角,tana/2=tan三次方r/2,2tana=tanr,求證,a,b,r成等差數(shù)列.
    7.已知,sina/sinb=cos(a+b),其中a,b為銳角,求tanb最大值.
    數(shù)學(xué)人氣:242 ℃時間:2020-06-07 13:14:02
    優(yōu)質(zhì)解答
    1.sinBsinC=cos²(A/2)
    sinBsinC=(1+cosA)/2
    2sinBsinC=1+cosA
    2sinBsinC=1-cos(B+C)
    2sinBsinC=1-cosBcosC+sinBsinC
    1=cosBcosC+sinBsinC=cos(B-C)
    ∴B-C=0 => B=C,即△ABC為等腰△
    2.cos²(a-b)-cos²(a+b)
    =[cos(a-b)+cos(a+b)][cos(a-b)-cos(a+b)]
    =2cosacosb*2sinasinb
    =2sinacosa*2sinbcosb
    =sin2asin2b
    =2tana/(1+tan²a) * 2tanb/(1+tan²b)=1/2
    ∴8tanatanb=(1+tan²a)(1+tan²b)
    (1+cos2a)(1+cos2b)
    =[1+(1-tan²a)/(1+tan²a)][1+(1-tan²b)/(1+tan²b)]
    =2/(1+tan²a) * 2/(1+tan²b)
    =4/(1+tan²a)(1+tan²b)
    =1/(2tanatanb)
    =1/3
    ∴tanatanb=3/2
    3.cos²a+cos²(a-π/3)+cos²(a+π/3)
    =cos²a+[cos(a-π/3)+cos(a+π/3)]²-2cos(a-π/3)cos(a+π/3)
    =cos²a+[2cosacos(π/3)]²-2[cosacos(π/3)+sinasin(π/3)][cosacos(π/3)-sinasin(π/3)]
    =cos²a+4cos²acos²(π/3)-2[cos²acos²(π/3)-sin²asin²(π/3)]
    =cos²a+2cos²acos²(π/3)+2sin²asin²(π/3)
    =3cos²a/2+3sin²a/2
    =3(cos²a+sin²a)/2
    =3/2
    4.sina+sinb+sinr=0
    sinr=-(sina+sinb)
    cosa+cosb+cosr=0
    cosr=-(cosa+cosb)
    sin²r+cos²r=(sina+sinb)^2+(cosa+cosb)^2
    =2+2(sinasinb+cosacosb)
    =2+2cos(b-a)
    =1
    cos(b-a)=-1/2
    ∵0≤a<b<r<2π,
    ∴b-a=2π/3
    5.題目打錯了,是3sin2a=2sin2b吧
    3sin²a+2sin²b=1
    3sin²a=1-2sin²b
    3sin²a=cos2b
    3sin2a=2sin2b
    sin2b=3sin2a/2
    sin2b=3sinacosa
    cos(a+2b)
    =cosacos2b-sinasin2b
    =cosa*(3sin²a)-sina*3sinacosa
    =0
    ∵0
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版