精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知函數(shù)f(x)=loga(根號(hào)下(x^2+m)+x)(a>0且a≠1)為奇函數(shù) (1)求實(shí)數(shù)m的值 (2)判斷

    已知函數(shù)f(x)=loga(根號(hào)下(x^2+m)+x)(a>0且a≠1)為奇函數(shù) (1)求實(shí)數(shù)m的值 (2)判斷
    f(x)的單調(diào)性并加以證明
    數(shù)學(xué)人氣:929 ℃時(shí)間:2019-11-24 13:58:50
    優(yōu)質(zhì)解答
    f(x)=loga(√(x²+m)+x)
    -f(x)=-loga(√(x²+m)+x)
    f(-x)=loga(√(x²+m)-x)
    ∵函數(shù)f(x)為奇函數(shù)
    ∴f(-x)=-f(x)
    即 loga(√(x²+m)-x)=-loga(√(x²+m)+x)
    或  (√(x²+m)-x)=1/(√(x²+m)+x)
       (x²+m)-x²=1
    ∴ m=1
    f(x)=loga(√(x²+1)+x)
    f'(x)=1/[lna(√(x²+1)+x)]*[x/√(x²+1)+1]
    令 f'(x)=0 x=-√(x²+1) 不成立
    ∴  函數(shù)在其定義域內(nèi)無(wú)拐點(diǎn)
    且  f'(x)>0 函數(shù)單調(diào)遞增
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版