在△ACF與△AHF中
∵AF平分∠CAB交CD于E?
|
又∵AF=AF,
∴△ACF≌△AHF,
∴AC=AH,
同理在△ACE與△AHE中,△ACE≌△AHE,
可知CE=EH,∠ACE=∠AHE,
在Rt△ACD中,∠CAD+∠ACD=90°,
在Rt△ABC中,∠CAB+∠B=90°,
又∵∠CAD與∠CAB為同一角,
∴∠ACD=∠B,
∴∠AHE=∠B,
∴EH∥BC,
∵CD⊥AB,F(xiàn)H⊥AB,
∴CD∥FH,
∴四邊形CEHF為菱形,四邊形EGBH為平行四邊形,
∴CF=EH,EH=GB,
∴CF=GB.
故選B.