精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知0

    已知0
    數(shù)學人氣:523 ℃時間:2020-05-24 21:26:37
    優(yōu)質(zhì)解答
    兩直線L1:ax-2y=2a-4,:L2:2x+a*2y=2a*2+4組成的方程組可求出交點坐標為(2,2)
    要使面積最小,則兩直線與XY軸的正截距最小
    L1:ax-2y=2a-4與X軸的截距<0,與Y軸截距為2-a
    L2:2x+a*2y=2a*2+4與Y軸的截距=2+4/a^2,與X軸截距為a^2+2
    由于L1與X軸截距為負,故圍成的四邊形,有一邊必為L1與Y軸的截距,其中一邊為L2與X軸的截距
    此時四邊形的面積=2*(2-a)/2+2*(a^2+2)/2=a^2-a+4=(a-1/2)^2+15/4
    故a=1/2時有最小值15/4
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版