∵四邊形ABCD是正方形,
∴四邊形ABFG和四邊形GFCD都是矩形,
![](http://hiphotos.baidu.com/zhidao/pic/item/f9dcd100baa1cd11c6f94992ba12c8fcc3ce2d30.jpg)
△AGP和△PFC都是等腰直角三角形.
∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.
又∵PB=PE,
∴BF=FE,
∴GP=FE,
∴△EFP≌△PGD(SAS).
∴PE=PD;
(2)∵△EFP≌△PGD,
∴∠1=∠2.
∴∠1+∠3=∠2+∠3=90度.
∴∠DPE=90度.
∴PE⊥PD.
證法二
證明:(1)∵四邊形ABCD是正方形,AC為對角線,
∴BC=DC,∠BCP=∠DCP=45°.
∵PC=PC,
∴△PBC≌△PDC (SAS).
∴PB=PD,∠PBC=∠PDC.
又∵PB=PE,
∴PE=PD;
(2)∵PB=PE,
∴∠PBE=∠PEB,
∴∠PEB=∠PDC,
∴∠PEB+∠PEC=∠PDC+∠PEC=180°,
∴∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°,
∴PE⊥PD.