∵P是優(yōu)弧BAC的中點,
∴
![]() |
PB |
![]() |
PC |
∴PB=PC.
又∵∠PBD=∠PCA(圓周角定理),
∴當BD=AC=4,△PBD≌△PCA.
∴PA=PD,即△PAD是以AD為底邊的等腰三角形.
(2)過點P作PE⊥AD于E,
![](http://hiphotos.baidu.com/zhidao/pic/item/3b87e950352ac65cccc3d2f1f8f2b21192138a6a.jpg)
由(1)可知,
當BD=4時,PD=PA,AD=AB-BD=6-4=2,
則AE=
1 |
2 |
∵∠PCB=∠PAD(在同圓或等圓中,同弧所對的圓周角相等),
∴cos∠PAD=cos∠PCB=
AE |
PA |
| ||
5 |
∴PA=
5 |
| ||
5 |
![]() |
PB |
![]() |
PC |
1 |
2 |
AE |
PA |
| ||
5 |
5 |