ax?1 |
ax2 |
(1)由已知,得f′(x)≥0在[1,+∞)上恒成立,
即a≥
1 |
x |
又∵當(dāng)x∈[1,+∞)時,
1 |
x |
∴a≥1,即a的取值范圍為[1,+∞);
(2)當(dāng)a≥1時,f′(x)>0在(1,2)上恒成立,這時f(x)在[1,2]上為增函數(shù),
∴f(x)min=f(1)=0;
當(dāng)0<a≤
1 |
2 |
∴f(x)min=f(2)=ln2-
1 |
2a |
當(dāng)
1 |
2 |
1 |
a |
又∵對于x∈[1,
1 |
a |
1 |
a |
∴f(x)min=f(
1 |
a |
1 |
a |
1 |
a |
綜上,f(x)在[1,2]上的最小值為
①當(dāng)0<a≤
1 |
2 |
1 |
2a |
②當(dāng)
1 |
2 |
1 |
a |
1 |
a |
③當(dāng)a≥1時,f(x)min=0.