又1+
tanA |
tanB |
tanB+tanA |
tanB |
=
| ||||
|
=
sin(A+B) |
cosAcosB |
cosB |
sinB |
=
sinC |
sinBcosA |
由正弦定理得:
sinC |
sinBcosA |
c |
bcosA |
∴1+
tanA |
tanB |
c |
bcosA |
而1+
tanA |
tanB |
2c |
b |
∴cosA=
1 |
2 |
∴A=
π |
3 |
∴由余弦定理得:a2=b2+c2-2bccosA
=b2+c2-2bc×
1 |
2 |
≥2bc-bc=bc(當且僅當b=c時取“=”),
∴
a2 |
bc |
故答案為:1.
tanA |
tanB |
2c |
b |
a2 |
bc |
tanA |
tanB |
tanB+tanA |
tanB |
| ||||
|
sin(A+B) |
cosAcosB |
cosB |
sinB |
sinC |
sinBcosA |
sinC |
sinBcosA |
c |
bcosA |
tanA |
tanB |
c |
bcosA |
tanA |
tanB |
2c |
b |
1 |
2 |
π |
3 |
1 |
2 |
a2 |
bc |