數(shù)列{an}的前n項和為Sn,數(shù)列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n. (1)設cn=an-1,求證:數(shù)列{cn}是等比數(shù)列; (2)求數(shù)列{bn}的通項公式.
數(shù)列{an}的前n項和為Sn,數(shù)列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)設cn=an-1,求證:數(shù)列{cn}是等比數(shù)列;
(2)求數(shù)列{bn}的通項公式.
數(shù)學人氣:329 ℃時間:2019-08-17 19:22:25
優(yōu)質解答
(1)證明:∵a
1=S
1,a
n+S
n=n,∴a
1+S
1=1,得a
1=
.
又a
n+1+S
n+1=n+1,兩式相減得2(a
n+1-1)=a
n-1,即
=
,
也即
=
,故數(shù)列{c
n}是等比數(shù)列.
(2)∵c
1=a
1-1=-
,
∴c
n=-
,a
n=c
n+1=1-
,a
n-1=1-
.
故當n≥2時,b
n=a
n-a
n-1=
-
=
.
又b
1=a
1=
,即b
n=
(n∈N
*).
我來回答
類似推薦
- 數(shù)列{an}的前n項和為Sn,數(shù)列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n. (1)設cn=an-1,求證:數(shù)列{cn}是等比數(shù)列; (2)求數(shù)列{bn}的通項公式.
- 數(shù)列的前n項和為Sn,數(shù)列中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n. (1)設cn=an-1,證:是等比數(shù)列
- 設數(shù)列{an}的前n項和為Sn=2n^2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
- 在數(shù)列{an}與{bn}中,a1=1,b1=4,數(shù)列{an}的前n項和Sn滿足nS(n+1)-(n+3)Sn=0,2a(n+1)為bn與b(n+1)的等比中項,n屬于正整數(shù)
- 設數(shù)列{an}的前項和為Sn,且Sn=2?1/2n?1,{bn}為等差數(shù)列,且a1=b1,a2(b2-b1)=a1. (Ⅰ)求數(shù)列{an}和{bn}通項公式; (Ⅱ)設cn=bnan,求數(shù)列{cn}的前n項和Tn.
- 明明過生日時時請好朋友們吃飯,買了4瓶橙汁,每瓶0.75升,每杯可倒3/10升,這些橙汁可倒多少杯?
- 花兒推開了春天的大門;雷電推開了夏天的大門仿著再寫4個句子!
- 隔一條長而寬的河如何測出松樹的高?
- 一個三位數(shù)除以一個二位數(shù),商最大是( )位數(shù),最小是( )位數(shù)
- 已知函數(shù)f(x)(x不等于0),對于任意非零實數(shù)x,y,滿足f(xy)=f(x)+f(y).
- 根號18/根號8*根號27/2
- sorry to break your walkman 翻譯成中文