再設(shè)A1,A2,A3,A4,A5的坐標(biāo)依次為(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5);
若
MA1 |
MA2 |
MA3 |
MA4 |
MA5 |
0 |
得(x1-x,y1-y)+(x2-x,y2-y)+(x3-x,y3-y)+(x4-x,y4-y)+(x5-x,y5-y)=
0 |
則有x=
x1+x2+x3+x4+x5 |
5 |
y1+y2+y3+y4+y5 |
5 |
只有一組解,即符合條件的點(diǎn)M有且只有一個(gè);
故選B.
MA1 |
MA2 |
MA3 |
MA4 |
MA5 |
0 |
MA1 |
MA2 |
MA3 |
MA4 |
MA5 |
0 |
0 |
x1+x2+x3+x4+x5 |
5 |
y1+y2+y3+y4+y5 |
5 |