∴∠ABC=180°-∠BAC-∠C=180°-50°-70°=60°,
∵AE、BF分別是∠BAC、∠ABC的平分線,
∴∠BAE=
1 |
2 |
1 |
2 |
∴∠AED=∠ABE+∠BAE=60°+25°=85°;
∵∠AOB=∠EBO+∠OED,
而∠OED=180°-∠AED=180°-85°=95°,
∴∠AOB=30°+95°=125°;
(2)∵AE、BF分別是∠BAC、∠ABC的平分線,
∴∠CAE=
1 |
2 |
1 |
2 |
∵∠AOB=∠EBO+∠OED,∠OED=∠CAE+∠C,
∴∠AOB=
1 |
2 |
1 |
2 |
1 |
2 |
∵∠ABC+∠BAC+∠C=180°,
∴∠AOB=
1 |
2 |
∴∠AOB=90°+
1 |
2 |