(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;
(2)設(shè)當(dāng)n=k時(shí)等式成立,即1?k+2?(k-1)+3?(k-2)+…+(k-1)?2+k?1=
1 |
6 |
則當(dāng)n=k+1時(shí),
f(k+1)=1?(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]?3+[(k+1)-1]?2+(k+1)?1
=f(k)+1+2+3+…+k+(k+1)
=
1 |
6 |
1 |
2 |
=
1 |
6 |
∴由(1)(2)可知當(dāng)n∈N*時(shí)等式都成立.