補平面Σ1:z=0,x²+y²≤r²,上側,這樣Σ+Σ1為一個封閉曲面
由高斯公式:
∫∫(Σ+Σ1) x²y² dxdy
=∫∫∫ 0 dxdydz
=0
下面計算所補平面的積分
∫∫(Σ1) x²y² dxdy
=∫∫(D) x²y² dxdy 其中積分區(qū)域D為x²+y²≤r²,下面用極坐標
=∫∫ ρ^5cos²θsin²θ dρdθ
=∫[0→2π] cos²θsin²θdθ ∫[0→r] ρ^5dρ
=(1/4)∫[0→2π] sin²2θ dθ×(1/6)ρ^6 |[0→r]
=(1/24)r^6∫[0→2π] sin²2θ dθ
=(1/48)r^6∫[0→2π] (1-cos4θ) dθ
=(1/48)r^6[θ - (1/4)sin4θ] |[0→2π]
=(1/24)πr^6
最后兩個積分相減得:
原式=0-(1/24)πr^6=-(1/24)πr^6
若有不懂請追問,如果解決問題請點下面的“選為滿意答案”.
利用高斯公式的方法計算積分∫∫ x2y2dxdy,其中∑是球面x2+y2+z2=r2下部分下側
利用高斯公式的方法計算積分∫∫ x2y2dxdy,其中∑是球面x2+y2+z2=r2下部分下側
數(shù)學人氣:703 ℃時間:2020-04-12 07:03:48
優(yōu)質(zhì)解答
我來回答
類似推薦
- 計算曲面積分∫∫(x+1)2dxdz,∑是半球面x2+y2+z2=R2(y>=0)的外側
- 關于高斯公式的 ∮x3dydz+y3dzdx+z3 dxdy,其中曲面為球面x2+y2+z2=a2上半部分的外側答案是五分之六,求詳
- 利用球坐標求積分x2+y2+z2,其中區(qū)域是錐面z=x2+y2開根號與球面x2+y2+z2=r2所
- X2+Y2+Z2
- 對面積的曲面積分(x2+y2)ds,其中是球面x2+y2+z2=R2
- 求解一道很簡單的一元二次方程
- 散步 的閱讀答案
- 若函數(shù)f(x)=log a(2-x)在(1,2)上的值恒為負數(shù),則a的取值范圍是?
- Betty would buy a coat online_buy it in a shop.
- 小學六年級 數(shù)學 簡便運算 請詳細解答,謝謝!(2 16:44:0)
- 下面大家和我一起用英語怎么寫
- 像哭笑不得這樣的詞有哪些
猜你喜歡
- 1籠子里有免子和雞.共有108條腿,算免子多少?雞多少?
- 2零度經(jīng)線和緯線如何確定?
- 3若知B(-4.0)C(4.0)是三角形AB的兩個端點,三角形ABC周長18.求頂點.A的軌跡方程
- 4《齊王筑城》全文的翻譯,急
- 5Commission Decision官方翻譯是個什么組織
- 6I am poor in english.I can hardly make myself understood. 這個understood為啥不用原型?
- 730噸比[]噸少二分之一噸
- 8王先生月收入2500元,如果按國家規(guī)定超過1600圓的部分按5%要上交個人所得稅,王先生每個月的實際收入是多
- 9一個長方形周長68米,長比寬的3倍少2米,長和寬各是多少?
- 1016乘(16乘8分之7)=幾要過程
- 11幽的筆順
- 12文帝之后六年..文言文中周亞夫是一個什么樣的人