精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)列an的通項an=n²(cos²nπ/3-sin²nπ/3) 前n項和為Sn

    數(shù)列an的通項an=n²(cos²nπ/3-sin²nπ/3) 前n項和為Sn
    (1)求Sn(2)bn=S3n/n×4^n(分母是n乘4的n次方) 求數(shù)列bn的前n項和Tn
    數(shù)學(xué)人氣:336 ℃時間:2020-05-01 13:50:05
    優(yōu)質(zhì)解答
    ∵數(shù)列{a[n]}的通項a[n]=n^2[(cosnπ/3)^2-(sinnπ/3)^2],前n項和為S[n]
    ∴a[n]=n^2Cos(2nπ/3)
    ∴S[n]=1^2(-1/2)+2^2(-1/2)+3^2+4^2(-1/2)+5^2(-1/2)+6^2+...+n^2Cos(2nπ/3)
    當(dāng)n=3k-2,即:k=(n+2)/3時:
    S[3k-2]
    =(-1/2)[1^2+2^2+...+(3k-2)^2]+3^3/2[1^2+2^2+...+(k-1)^2]
    =-(3k-2)(3k-1)(6k-3)/12+27(k-1)k(2k-1)/12
    =[-n(n+1)(2n+1)+(n-1)(n+2)(2n+1)]/12
    =(2n+1)(-n^2-n+n^2+n-2)/12
    =-(2n+1)/6
    當(dāng)n=3k-1,即:k=(n+1)/3時:
    S[3k-1]
    =(-1/2)[1^2+2^2+...+(3k-1)^2]+3^3/2[1^2+2^2+...+(k-1)^2]
    =-(3k-1)3k(6k-1)/12+27(k-1)k(2k-1)/12
    =[-n(n+1)(2n+1)+(n-2)(n+1)(2n-1)]/12
    =(n+1)(-2n^2-n+2n^2-5n+2)/12
    =(n+1)(-6n+2)/12
    =-(n+1)(3n-1)/6
    當(dāng)n=3k,即:k=n/3時:
    S[3k]
    =(-1/2)[1^2+2^2+...+(3k)^2]+3^3/2(1^2+2^2+...+k^2)
    =-3k(3k+1)(6k+1)/12+27k(k+1)(2k+1)/12
    =[-n(n+1)(2n+1)+n(n+3)(2n+3)]/12
    =n(-2n^2-3n-1+2n^2+9n+9)/12
    =n(6n+8)/12
    =n(3n+4)/6
    (2)∵當(dāng)n=3k時:S[3k]=n(3n+4)/6=3k(9k+4)/6=k(9k+4)/2
    ∴S[3n]=n(9n+4)/2
    ∵b[n]=S[3n]/(n4^n)
    ∴b[n]=(9n+4)/(2*4^n)=(9/2)(n/4^n)+2/4^n
    設(shè)R[n]=1/4^1+2/4^2+3/4^3+...+n/4^n
    則R[n]/4=1/4^2+2/4^3+3/4^4+...+n/4^(n+1)
    ∴3R[n]/4
    =R[n]-R[n]/4
    =(1/4^1+1/4^2+1/4^3+...+1/4^n)-n/4^(n+1)
    =(1/4)(1-1/4^n)/(1-1/4)-n/4^(n+1)
    =(1/3)(1-1/4^n)-n/4^(n+1)
    =[4-(3n+4)/4^n]/12
    ∴R[n]=[4-(3n+4)/4^n]/9
    ∴T[n]
    =[(9/2)(1/4^1)+2/4^1]+[(9/2)(2/4^2)+2/4^2]+...+[(9/2)(n/4^n)+2/4^n]
    =(9/2)(1/4^1+2/4^2+...+n/4^n)+2(1/4^1+1/4^2+1/4^3+...+1/4^n)
    =(9/2)R[n]+2(1/4)(1-1/4^n)/(1-1/4)
    =[4-(3n+4)/4^n]/2+(2/3)(1-1/4^n)
    =2-(3n/2+2)/4^n+2/3-(2/3)/4^n
    =[16-(9n+16)/4^n]/6
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版