∴
p |
2 |
∴軌跡方程為y2=4x.
(2)易知k=0時不符合題意,應(yīng)舍去.
當(dāng)k≠0時,設(shè)點M(
| ||
4 |
| ||
4 |
y2?y1 | ||||||||
|
1 |
k |
∵Q(x0,y0)在直線l上,
∴y0=kx0+3,∴x0=?
2k+3 |
k |
∵點Q在拋物線的內(nèi)部,∴y02<4x0.
即(?2k)2<4×(?
2k+3 |
k |
k3+2k+3 |
k |
(k+1)(k2?k+3) |
k |
∵k2?k+3=(k?
1 |
2 |
11 |
4 |
k+1 |
k |
∴k(k+1)<0,解得-1<k<0.
∴k的取值范圍是(-1,0).