①a>0時(shí),f'(x)=3ax2+2x-1是開口向上的拋物線.
顯然f'(x)在(2,+∞)上存在區(qū)間,使f'(x)>0即a>0適合.
②a<0時(shí),f'(x)=3ax2+2x-1是開口向下的拋物線.
要使f'(x)在(2,+∞)上存在區(qū)間有f'(x)>0,則f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或兩解.
即f'(2)>0或
|
1 |
4 |
又a<0∴a∈(?
1 |
4 |
綜合得a∈(?
1 |
4 |
(2)不存在實(shí)數(shù)a,b,c滿足條件.
事實(shí)上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
∴f′(
x1+x2 |
2 |
x1+x2 |
2 |
x1+x2 |
2 |
=3a?
| ||||
4 |
x | 21 |
x | 22 |
a |
4 |
∵a≠0且x1?x2≠0∴f′(
x1+x2 |
2 |
故不存在實(shí)數(shù)a,b,c滿足條件.