f′(x)=0,
∴x=
1 |
2 |
1 |
e |
當(dāng)x∈(
1 |
2 |
1 |
e |
當(dāng)x∈(?
1 |
2 |
1 |
2 |
1 |
e |
∴函數(shù)的極小值是f(
1 |
2 |
1 |
e |
1 |
e |
(2)x≥0時(shí),都有f(x)≥2ax成立,
令g(x)=(2x+1)ln(2x+1)-2ax
g′(x)=2[ln(2x+1)+1-a]=0,x=
1 |
2 |
當(dāng)a≤1,a-1≤0,
1 |
2 |
g′(x)≥0恒成立,
∴g(x)在[0,+∞)上單增,
∴g(x)≥g(0)=0成立,對(duì)于x≥0時(shí),都有f(x)≥2ax成立,
當(dāng)a>1時(shí),a-1>0,
1 |
2 |
當(dāng)x∈[0,
1 |
2 |
又g(0)=0,∴當(dāng)x∈[0,
1 |
2 |
即當(dāng)a>1時(shí),不是所有的x≥0都有f(x)≥2ax,
綜上可知a≤1.