∵OA=OB,點(diǎn)A在x軸的負(fù)半軸上,
∴點(diǎn)A的坐標(biāo)為(-c,0),
∵點(diǎn)A在拋物線y=-x2+bx+c上,
∴0=-c2-bc+c,
∵c>0,
∴兩邊都除以c得:0=-c-b+1,
b+c=1,
答:b+c的值是1.
![](http://hiphotos.baidu.com/zhidao/pic/item/3b87e950352ac65c99e487c2f8f2b21192138a9a.jpg)
(2)∵四邊形OABC是平行四邊形
∴BC=AO=c,
又∵BC∥x軸,點(diǎn)B的坐標(biāo)為(0,c)
∴點(diǎn)C的坐標(biāo)為(c,c),
又點(diǎn)C在拋物線上,
∴c=-c2+bc+c
∴b-c=0或c=0(舍去),
又由(1)知:b+c=1,
∴b=
1 |
2 |
1 |
2 |
∴拋物線的解析式為y=?x2+
1 |
2 |
1 |
2 |
答:拋物線的解析式是y=-x2+
1 |
2 |
1 |
2 |
(3)過點(diǎn)P作PM⊥x軸,PN⊥y軸,垂足分別為M、N,PM交BC的延長線于H,
![](http://hiphotos.baidu.com/zhidao/pic/item/d1a20cf431adcbefeaf89fb7afaf2edda2cc9fb7.jpg)
∵由(2)知BC∥x軸,PM⊥x軸,
∴PH⊥BC,
∵BP平分∠OBC,PN⊥y軸,PH⊥BC,
∴PN=PH,
設(shè)點(diǎn)P的坐標(biāo)為(x,?x2+
1 |
2 |
1 |
2 |
∴PN=x,ON=PM=-(-x2+
1 |
2 |
1 |
2 |
∴BN=BO+ON=
1 |
2 |
1 |
2 |
1 |
2 |
∴BN=PN,即
1 |
2 |
1 |
2 |
1 |
2 |
解得:x=
3 |
2 |
當(dāng)x=
3 |
2 |
1 |
2 |
1 |
2 |
∴點(diǎn)P的坐標(biāo)為(1.5,-1),
當(dāng)x=0時(shí),-x2+
1 |
2 |
1 |
2 |
1 |
2 |
∴點(diǎn)P的坐標(biāo)為(0,
1 |
2 |
答:點(diǎn)P的坐標(biāo)是(1.5,-1).