任取x1,x2∈R,且x1<x2,
則f(x1)-f(x2)
=(1-2x31)-(1-2x32)
=2(x32-x13)
=2(x2-x1)(x22+x1x2+x21)
=2(x2-x1)[(x1+x2)2+
3 |
4 |
∵x2>x1,∴x2-x1>0,
又(x1+x2)2≥0,
3 |
4 |
3 |
4 |
∴2(x2-x1)[(x1+x2)2+
3 |
4 |
∴f(x1)-f(x2)>0,即f(x1)>f(x2)
故f(x)=1-2x3在(-∞,+∞)上為單調(diào)減函數(shù).
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |