(Ⅰ)因為f(x)=2cos2x?cos(2x+
π |
2 |
=1+cos2x+sin2x…(4分)
=
2 |
π |
4 |
所以f(
π |
8 |
2 |
π |
4 |
π |
4 |
2 |
(Ⅱ)因為f(x)=
2 |
π |
4 |
所以T=
2π |
2 |
又y=sinx的單調(diào)遞減區(qū)間為(2kπ+
π |
2 |
3π |
2 |
所以令2kπ+
π |
2 |
π |
4 |
3π |
2 |
解得kπ+
π |
8 |
5π |
8 |
所以函數(shù)f(x)的單調(diào)減區(qū)間為(kπ+
π |
8 |
5π |
8 |
π |
2 |
π |
8 |
π |
2 |
2 |
π |
4 |
π |
8 |
2 |
π |
4 |
π |
4 |
2 |
2 |
π |
4 |
2π |
2 |
π |
2 |
3π |
2 |
π |
2 |
π |
4 |
3π |
2 |
π |
8 |
5π |
8 |
π |
8 |
5π |
8 |