∴f′(x)=2x+2,
∴an+1=f′(an)=2an+2,
∴
an+1+2 |
an+2 |
∴數(shù)列{an+2}是以3為首項(xiàng),2為公比的等比數(shù)列,
∴an+2=3×2n-1,
∴an=3×2n-1-2;
∴Sn=a1+a2+…+an
=3(1+2+22+…+2n-1)-2n
=3×
1?2n |
1?2 |
=3×2n-2n-3.
(Ⅱ)∵bn+1=f(bn)=bn2+2bn,
∴bn+1+1=(bn+1)2,
兩邊取對數(shù):lg(bn+1+1)=2lg(bn+1),
∴
lg(bn+1+1) |
lg(bn+1) |
∴數(shù)列{lg(bn+1)}是公比為2的等比數(shù)列,
又lg(b1+1)=lg(t+1),
∴l(xiāng)g(bn+1)=lg(t+1)?2n-1=lg(t+1)2n?1,
∴bn+1=(t+1)2n?1,
∴bn=(t+1)2n?1-1.