假設(shè)去掉第一項(xiàng),則有(a1+d)(a1+3d)=(a1+2d)2,解得d=0,不合題意;
去掉第二項(xiàng),有a1(a1+3d)=(a1+2d)2,化簡(jiǎn)得:4d2+a1d=0即d(4d+a1)=0,解得d=-
a1 |
4 |
因?yàn)閿?shù)列的各項(xiàng)不為零,所以數(shù)列不會(huì)出現(xiàn)第五項(xiàng)(a1+4d=0),所以數(shù)對(duì)(n,
a1 |
d |
去掉第三項(xiàng),有a1(a1+3d)=(a1+d)2,化簡(jiǎn)得:d2-a1d=0即d(d-a1)=0,解得d=a1
則此數(shù)列為:a,2a,3a,4a,…此數(shù)列仍然不會(huì)出現(xiàn)第五項(xiàng),
因?yàn)槌霈F(xiàn)第五項(xiàng),數(shù)列不為等比數(shù)列,所以數(shù)對(duì)(n,
a1 |
d |
去掉第四項(xiàng)時(shí),有a1(a1+2d)=(a1+d)2,化簡(jiǎn)得:d=0,不合題意;
當(dāng)去掉第五項(xiàng)或更遠(yuǎn)的項(xiàng)時(shí),必然出現(xiàn)上述去掉第一項(xiàng)和第四項(xiàng)時(shí)的情況,即d=0,不合題意.
所以滿(mǎn)足題意的數(shù)對(duì)有兩個(gè),組成的集合為{(4,-4),(4,1)}.
故答案為:{(4,-4),(4,1)}