精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)數(shù)列an的前n項(xiàng)和Sn=4/3an-1/3*2n+1+2/3,n=1,2,3…….

    設(shè)數(shù)列an的前n項(xiàng)和Sn=4/3an-1/3*2n+1+2/3,n=1,2,3…….
    (1)求首項(xiàng)a1與通項(xiàng)an;
    (2)設(shè)Tn=2n/Sn,n=1,2,3,……,證明∑Ti
    數(shù)學(xué)人氣:853 ℃時(shí)間:2020-01-29 14:50:28
    優(yōu)質(zhì)解答
    當(dāng)n=1時(shí),a1=S1=(4/3)a1-(1/3)*2^(1+1)+2/3=(4/3)a1-2/3,解得:a1=2;
    當(dāng)n>1時(shí):
    Sn=(4/3)an-(1/3)*2^(n+1)+2/3=(4/3)an-2*(1/3)*2^n+2/3
    S(n-1)=(4/3)a(n-1)-(1/3)*2^n+2/3=(4/3)a(n-1)-1*(1/3)*2^n+2/3
    an
    =Sn-S(n-1)
    =[(4/3)an-2*(1/3)*2^n+2/3]-[(4/3)a(n-1)-1*(1/3)*2^n+2/3]
    =(4/3)an-(4/3)a(n-1)-(1/3)*2^n
    ∴(1/3)an=(4/3)a(n-1)+(1/3)*2^n
    即 an=4*a(n-1)+2^n
    4*a(n-1)=4^2*a(n-2)+4*2^(n-1)
    ……
    4^(n-2)*a2=4^(n-1)*a1+4^(n-2)*2^2
    上述式子相加,得:
    an=4^(n-1)*a1+2^n+4*2^(n-1)+…+4^(n-2)*2^2
    =2^(2n-2)*2+2^n+2^2*2^(n-1)+…+2^(2n-4)*2^2
    =2^(2n-1)+2^n+2^(n+1)+…+2^(2n-2)
    =2^(2n-1)+2^n[2^0+2^1+…+2^(n-2)]
    =2^(2n-1)+2^n*2^0*[1-2^(n-1)]/(1-2)
    =2^(2n-1)+2^n*[2^(n-1)-1]
    =2^(2n-1)+2^(2n-1)-2^n
    =2^1*2^(2n-1)-2^n
    =2^(2n)-2^n
    ∵a1=2=2^2-2^1,符合上式
    ∴數(shù)列{an}的通項(xiàng)公式是an=2^(2n)-2^n.
    (2)證明:
    Sn=(2^2-2^1)+(2^4-2^2)+…+[2^(2n)-2^n]
    =[2^2+2^4+…+2^(2n)]-(2^1+2^2+…+2^n)
    =4[1-(2^2)^n]/(1-2^2)-2(1-2^n)/(1-2)
    =(4/3)[(2^n)^2-1]-2(2^n-1)
    =(4/3)*(2^n)^2-4/3-2*2^n+2
    =(4/3)*(2^n)^2-2*2^n+2/3
    則Tn=2^n/Sn=1/[(4/3)*(2^n)-2+2/(3*2^n)]=(3/2)*1/(2*2^n+1/2^n-3).
    設(shè)f(n)=1/(2*2^n+1/2^n-3)
    =(2^n)/[2*(2^n)^2+1-3*(2^n)]
    =(2^n)/(2^n-1)(2*2^n-1)
    =[(2*2^n-1)-(2^n-1)]/(2^n-1)(2*2^n-1)
    =1/(2^n-1)-1/[2^(n+1)-1]
    則Tn=(3/2)*f(n)=(3/2)*{1/(2^n-1)-1/[2^(n+1)-1]}.
    ∴n
    ∑ Ti=T1+T2+T3+…+Tn
    i=1
    =(3/2)*{(1-1/3)+(1/3-1/7)+(1/7-1/15)+…1/(2^n-1)-1/[2^(n+1)-1]}
    =(3/2)*{1-1/[2^(n+1)-1]}
    =3/2-(3/2)*{1/[2^(n+1)-1]}
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版