1 |
1+2+3+…+n |
2 |
n(n+1) |
∴Sn=a1+a2+a3+…+an
=2(
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n×(n+1) |
=2×(1?
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=2(1-
1 |
n+1 |
2n |
n+1 |
故答案:
2n |
n+1 |
1 |
1+2 |
1 |
1+2+3 |
1 |
1+2+3+…+n |
1 |
1+2+3+…+n |
2 |
n(n+1) |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n×(n+1) |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
2n |
n+1 |
2n |
n+1 |