a(
| ||
(x+1)2 |
b |
x2 |
由于直線x+2y-3=0的斜率為-
1 |
2 |
所以
|
1 |
2 |
解得a=1,b=1
(II)由(I)知f(x)=
lnx |
x+1 |
1 |
x |
所以f(x)?
lnx |
x?1 |
1 |
1?x2 |
x2?1 |
x |
考慮函數(shù)h(x)=2lnx?
x2?1 |
x |
則h′(x)=
2 |
x |
2x2?(x2?1) |
x2 |
(x?1)2 |
x2 |
所以當(dāng)x≠1時(shí),h′(x)<0而h(1)=0,
當(dāng)x∈(0,1)時(shí),h(x)>0可得
1 |
1?x2 |
當(dāng)x∈(1,+∞)時(shí),h(x)<0,可得
1 |
1?x2 |
從而當(dāng)x>0且x≠1時(shí),
f(x)?
lnx |
x?1 |
lnx |
x?1 |