![](http://hiphotos.baidu.com/zhidao/pic/item/b8389b504fc2d56226a7055ce41190ef77c66cd0.jpg)
將C(-2,0)代入得:a+2=0,即a=-2,
則拋物線解析式為y=-2(x+3)2+2=-2x2-12x-16;
(2)作出拋物線的對(duì)稱軸,與x軸交于D點(diǎn),可得AD⊥x軸,
∵A(-3,2),C(-2,0),
∴AD=OC=2,OD=3,CD=OD-OC=3-2=1,
∵CB⊥AC,
∴∠ACD+∠BCO=90°,
∵∠CAD+∠ACD=90°,
∴∠BCO=∠CAD,
在△ACD和△BCO中,
|
∴△ACD≌△BCO(ASA),
∴OB=CD=1,
則B(0,1);
(3)作出直線AA′,BB′,A′D′⊥x軸,B′O′⊥x軸,OO′即為平移的距離,
根據(jù)題意設(shè)A′(m,2),B′(m+3,1),反比例解析式為y=
k |
x |
將A′與B′代入得:2m=k,m+3=k,即2m=m+3,
解得:m=3,k=6,
∴反比例解析式為y=
6 |
x |
∴OO′=6,即平移的距離為6.