o(α)的意思是高階無(wú)窮小,通俗解釋就是o(α)比α更快速地趨近于0,比如1/x,1/x²和1/x³
當(dāng)x趨近于無(wú)窮時(shí),可以看到三者都是趨近于0的無(wú)窮小,但是很明顯1/x³比1/x²更快趨近于0,而1/x²又必1/x更快,因此,1/x²和1/x³都是1/x的高階無(wú)窮小,而1/x³又是比1/x²更高階的無(wú)窮小.
1/x²和1/x³都是1/x的高階無(wú)窮小記作1/x²=o(1/x),1/x³=o(1/x).1/x³是1/x²的高階無(wú)窮小,則記作1/x³=o(1/x²).
高階無(wú)窮小的定義,當(dāng)兩個(gè)無(wú)窮小量比值的極限limf(x)/g(x)=0時(shí),則有f(x)=o(g(x))
等價(jià)無(wú)窮小是當(dāng)變量趨向于某一值時(shí),兩個(gè)無(wú)窮小函數(shù)f(x)和g(x)比值的極限等于1,即
limf(x)/g(x)=1
若f(x)=g(x)+o(g(x))
則有
limf(x)/g(x)=lim[g(x)+o(g(x))]/g(x)=lim[1+o(g(x))/g(x)]=1
等價(jià)無(wú)窮小的必要充分條件中β=α+o(α),里面的o(α)是什么意思,是不是一個(gè)函數(shù)?是不是無(wú)窮小?最好緊扣定義.我是高二學(xué)生.正在自學(xué)微積分.希望一次學(xué)好.麻煩老師們,
等價(jià)無(wú)窮小的必要充分條件中β=α+o(α),里面的o(α)是什么意思,是不是一個(gè)函數(shù)?是不是無(wú)窮小?最好緊扣定義.我是高二學(xué)生.正在自學(xué)微積分.希望一次學(xué)好.麻煩老師們,
數(shù)學(xué)人氣:705 ℃時(shí)間:2020-01-28 09:18:21
優(yōu)質(zhì)解答
我來(lái)回答
類似推薦
- 高等數(shù)學(xué)第一章 函數(shù)與極限 等價(jià)無(wú)窮小
- 高數(shù)等價(jià)無(wú)窮小問(wèn)題(能不能把函數(shù)內(nèi)的函數(shù)等價(jià)成無(wú)窮小)
- 怎么求一個(gè)函數(shù)的等價(jià)無(wú)窮小?
- 高數(shù)中,如何證明arctanx和x是等價(jià)無(wú)窮小函數(shù)
- 高等函數(shù)等價(jià)無(wú)窮小的總結(jié)即常見(jiàn)的等價(jià)無(wú)窮?。ㄒc(diǎn))!
- 把自然數(shù)1.2.3.按下表的規(guī)律排成5列,請(qǐng)問(wèn)1000出現(xiàn)在第幾列?
- 一根繩子,第一次剪去全長(zhǎng)的8分之三,第二次剪去7.5,這時(shí)剪去的與剩下的米數(shù)比為7比5,第一次剪去多少
- 在水平面內(nèi)用5N的水平力拉著一重10N的物體做勻速直線運(yùn)動(dòng)
- 小明與小華郵票張數(shù)的比是5:6,小明給小華10張郵票后,小明與小華郵票張數(shù)的比是4:5.小明原有郵票多少?gòu)垼?/a>
- 各項(xiàng)都是正數(shù)的等比數(shù)列{an},公比q≠1,a5,a7,a8成等差數(shù)列,則公比q=_.
- 認(rèn)真閱讀《仙人球》一文,
- 孫悟空是個(gè)什么樣的人物?寫一段話介紹一下
猜你喜歡
- 1【(12/5-2.4)*2010+8.7*587】/5
- 2當(dāng)a大于0,則|a減根號(hào)下9a的平方|等于多少?
- 3《魯迅漂流記》簡(jiǎn)要的,主要內(nèi)容?
- 4英漢互譯 No one will make a deeision to run a maratho
- 5一座雕塑的基座是圓形的,半徑是15cm,在它的周圍植上5m寬的環(huán)形草坪,草坪有多少平方米?如果植1平方米草坪的成本為20元,那么植這塊草坪的成本至少是多少元?
- 6英語(yǔ)翻譯
- 7在△ABC中,∠A-∠B=35°,∠C=55°,則∠B等于( ) A.50° B.55° C.45° D.40°
- 8若平面內(nèi)有一正方形ABCD,M是該平面內(nèi)任意點(diǎn),則MA+MC/MB+MD的最小值為_(kāi).
- 9冪函數(shù)f(x)的圖像點(diǎn)(3,根號(hào)27),則f(4)的值是?
- 10虛擬語(yǔ)氣練習(xí)題求解
- 11已知圓的面積S是半徑r的函數(shù)S=πr^2,用定義求S在r=5處的導(dǎo)數(shù),并解釋S‘(5)的意義
- 12再問(wèn)下,題目是照樣子寫詞語(yǔ),列子是濃濃的,我不懂那是什么