m |
n |
∴(sinC,sinBcosA)?(b,2c)=0.
∴bsinC+2csinBcosA=0.
根據(jù)正弦定理得:
b |
sinB |
c |
sinC |
∴bc+2cbcosA=0.
∵b≠0,c≠0,
∴1+2cosA=0.
∴cosA=?
1 |
2 |
∵0<A<π,
∴A=
2π |
3 |
(2)△ABC中,∵a2=c2+b2-2cbcosA,
∴12=4+b2-4bcos120°.
∴b2+2b-8=0.∴b=-4(舍),b=2.
∴△ABC的面積S=
1 |
2 |
1 |
2 |
| ||
2 |
3 |
m |
n |
m |
n |
3 |
m |
n |
b |
sinB |
c |
sinC |
1 |
2 |
2π |
3 |
1 |
2 |
1 |
2 |
| ||
2 |
3 |