∴當(dāng)n=1時,a1=2×1=2; (2分)
當(dāng)n=2時,a1+2a2=(a1+a2)+4,∴a2=4; (5分)
當(dāng)n=3時,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.(8分)
(2)證明:∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴當(dāng)n≥2時,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②(9分)
①-②得nan=(n-1)Sn-(n-2)Sn-1+2
∴nan=n(Sn-Sn-1)-Sn+2Sn-1+2
∴nan=nan-Sn+2Sn-1+2.(11分)
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2). (13分)
∵S1+2=4≠0,∴Sn-1+2≠0,∴
Sn+2 |
Sn?1+2 |
故{Sn+2}是以4為首項,2為公比的等比數(shù)列. (15分)