令d=a2-a1.
下面用數(shù)學(xué)歸納法證明an=a1+(n-1)d(n∈N).
(1)當(dāng)n=1時(shí)上述等式為恒等式a1=a1.
當(dāng)n=2時(shí),a1+(2-1)d=a1+(a2-a1)=a2,等式成立.
(2)假設(shè)當(dāng)n=k(k≥2)時(shí)命題成立,ak=a1+(k-1)d.由題設(shè),有
Sk=
k(a1+ak) |
2 |
(k+1)(a1+ak+1) |
2 |
∴(k+1)
(a1+ak+1) |
2 |
k(a1+ak) |
2 |
把a(bǔ)k=a1+(k-1)d代入上式,得
(k+1)(a1+ak+1)=2ka1+k(k-1)d+2ak+1.
整理得(k-1)ak+1=(k-1)a1+k(k-1)d.
∵k≥2,∴ak+1=a1+kd.即當(dāng)n=k+1時(shí)等式成立.
由(1)和(2),等式對所有的自然數(shù)n成立,從而{an}是等差數(shù)列
法二:
當(dāng)n≥2時(shí),由題設(shè),Sn?1=
(n?1)(a1+an?1) |
2 |
n(a1+an) |
2 |
所以an=Sn-Sn-1=
n(a1+an) |
2 |
(n?1)(a1+an?1) |
2 |
同理有
an+1=
(n+1)(a1+an?1) |
2 |
n(a1+an) |
2 |
從而
an+1-an=
(n+1)(a1+an?1) |
2 |
(n?1)(a1+an?1) |
2 |
整理得an+1-an=an-an-1═a2-a1
從而{an}是等差數(shù)列.