∴BC⊥平面ABE,則AE⊥BC
又∵BF⊥平面ACE,∴AE⊥BF
∵BC∩BF=B,
∴AE⊥平面BCE,且BE?平面BCE,∴AE⊥BE
(2)過E點(diǎn)作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH,
∴EH⊥平面ABCD,
∵AE=EB=2,∴AB=2
2 |
2 |
∴VD?AEC=VE?ADC=
1 |
3 |
2 |
2 |
4 |
3 |
(3)在△ABE中過M點(diǎn)作MG∥AE交BE于G點(diǎn),在△BEC中過G點(diǎn)作GN∥BC交EC于N點(diǎn),連MN,
∵AM=2MB,∴CN=
1 |
3 |
∵M(jìn)G∥AE,MG?平面ADE,AE?平面ADE,∴MG∥平面ADE
同理可證,GN∥平面ADE,
∵M(jìn)G∩GN=G,∴平面MGN∥平面ADE
又∵M(jìn)N?平面MGN,∴MN∥平面ADE,
∴N點(diǎn)為線段CE上靠近C點(diǎn)的一個(gè)三等分點(diǎn)